Theoretical Study of the Local Lattice Structure and the Site Symmetry of Fe³⁺ in ZnGa₂O₄:Fe³⁺

Xiong Yang^a, Xiao-Yu Kuang^{a,b}, and Hui Wang^a

^a Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China
^b International Centre for Materials Physics, Chinese Academy of Science, Shenyang 110016, China

Reprint requests to X.-Y. K.; E-mail: yxxyk1224@163.com

Z. Naturforsch. **62a.** 457 – 461 (2007): received March 12, 2007

The site symmetry of Fe³⁺ in ZnGa₂O₄:Fe³⁺ and the local lattice structure around the impurity ion have been studied by diagonalizing the complete energy matrices for a d⁵ configuration ion in a trigonal ligand-field, and calculating the EPR parameters D and (a - F). The calculation indicates that when the local lattice structure of Fe³⁺ located at an octahedral site is distorted slightly, the site symmetry for Fe³⁺ is still D_{3d} , but not C_{3v} . – PACS numbers: 71.70.Gm Exchange interactions; 71.70.Ch Crystal and ligand-fields.

Key words: Space Group; EPR; Local Lattice Structure; Site Symmetry.